The Short-Term Rational Lanczos Method and Applications
نویسندگان
چکیده
Rational Krylov subspaces have become a reference tool in dimension reduction procedures for several application problems. When data matrices are symmetric, short-term recurrence can be used to generate an associated orthonormal basis. In the past this procedure was abandoned because it requires twice number of linear system solves per iteration compared with classical long-term method. We propose implementation that allows one obtain rational subspace reduced at lower overall computational costs than proposed literature by also conveniently combining two solves. Several applications discussed where feature exploited avoid storing whole illustrate advantages examples.
منابع مشابه
the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولthe effect of lexical and grammatical collocation instruction through input flooding versus awareness raising on short-term and delayed retention as well a active use
this study attempted to explore if teaching english collocations through two different modes of awareness-raising and input flooding has any possible differential effect on immediate retention as well as retention in a delayed assessment. it also compared the possible differential effect of teaching english collocations implicitly and explicitly on actively using the items in writing. m...
15 صفحه اولChanging poles in the rational Lanczos method for the Hermitian eigenvalue problem
Applications such as the modal analysis of structures and acoustic cavities require a number of eigenvalues and eigenvectors of large scale Hermitian eigenvalue problems. The most popular method is probably the spectral transformation Lanczos method. An important disadvantage of this method is that a change of pole requires a complete restart. In this paper, we investigate the use of the ration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2022
ISSN: ['1095-7197', '1064-8275']
DOI: https://doi.org/10.1137/21m1403254